"Laser Microdrilling in Industrial Applications"

Dr. Dimitris Karnakis

Oxford Lasers Ltd., Didcot OX11 7HP (UK)
1. Market Overview
2. Which Lasers to use?
3. Physical Mechanisms
4. Laser Drilling Techniques
5. Case Study: Fuel-Injectors
6. Future Trends
Industry Sectors

- Semiconductor
- Automotive
- Aerospace
- Electro-optics
- Photonics
- Medical
- Food

Manufacturing Applications

- Inkjet Printer Nozzles
- Via Circuit Electrical Interconnects
- Optical Switch Fab
- Test Probe Cards
- Gas Flow – Chemical Sensors
- Leak Detection
- Biomedical Sensors
- Fuel Injection Nozzles
- Aerosol Atomisers
- Engine Silencing
- Food Packaging
- Particulate Filters
- Solar Cell Technology
- Turbine Blade Cooling
Example Applications

Fuel-injection nozzle drilling

- 150µm Ø, 511nm, 1mm thick steel
- Injection hole
- Valve
- Fuel feed

PCB via drilling

Cardiac stent manufacturing

Inkjet printer manufacturing
Annual Market Growth: 10% (10 yr average)

Source: Laser Focus World, BCC Inc. Market Analysis, Industrial Laser Solutions
Which Industrial Materials to Drill?

Metals

Silicon

CVD Diamond

Plastics

Ceramics
Examples of Laser Drilled Shapes

- Blind
- Angled
- Shaped
- Rectangle
Why Use Lasers to Drill Holes?

• Non-contact enabling technique
• High Processing Speed
• High Resolution
• Flexibility (hole size, shape)
• Compactness (small machine footprint)
• Cost effectiveness
Important Laser-Drilling Markets

Main Drivers:
Semiconductor (micro via-holes, ink-jet printing)
Aerospace (turbine cooling)

Emerging Markets:
Automotive, Pharmaceutical, Biomedical

![Graph showing via sizes and aspect ratios](image)

Source: ESI
Micro-Via Drilling

Consumer Electronics
Example: Hand-held devices (Mobile phones, video & digital cameras)

Real-Estate Requirement:
High Packing Density of PCB Boards
⇒ Multi-layered PCBs needed
⇒ Via interconnects holes needed

Technology Comparison

Mechanical Drilling (hole Ø > 0.1mm)
- Drill speed: ~ 500 holes /min
- Cost: ~$2400 / \(10^5\) holes

Laser Drilling (hole Ø < 0.025 mm)
- Drill speed: ~ 34000 holes /min
- Cost: <$1 / \(10^5\) holes
Indicative Cost of Laser Processing

Capital Cost
- Laser/Optics
- Motion (CNC, galvo, etc)
- Cleanroom/ Environment
- Machine Vision
- Software
- Sample Handling
- Metrology Equipment
- Safety Equipment
- Downtime

Running Cost
- Optics
- Laser consumables
 - diode arrays
 - flashlamps
 - assist gases
- Water, Power
- Sample postprocessing
- Other consumables

Main Q: Which laser to use?
1. Market Overview
2. Which Lasers to use?
3. Physical Mechanisms
4. Laser Drilling Techniques
5. Case Study: Fuel-Injectors
6. Future Trends
Why Use **Pulsed** Lasers to Drill Holes?

Pulsed Lasers:

- **Provide Overall Excellent Feature Quality**
 Short interaction time with material
 Small heat affected zone (HAZ)

- **Fine Resolution**
 Controlled material removal

- **Enable Machining of Transparent Materials**
 High laser intensity enables micromachining of any material
Which Laser to Use?

It is always a case of balancing

by adjusting laser parameters

wavelength, pulse width, power, rep.rate, etc

Industrial Laser Choice

• CO₂
• Excimer
• Copper
• DPSS
• Ultrafast (ps, fs)
• Fiber/Disc

Feature Quality Proc.Speed

Available Industrial Lasers

Courtesy: Corelase
Nd:YAG Laser Drilling

Typical Laser Specs:
- **Wavelength:** 1064, 532, 355, 266, 213 nm
- **Power:** $1 - 10^3$ W
- **Pulse Length:** $10^{-12} - 10^{-3}$ s
- **Rep. Rate:** 1 Hz – MHz
- **Focussability:** $M^2 \sim 1 - 40$
- **Price:** from $20k +$

Aerospace
Turbine blade cooling

Semiconductor
Silicon wafer drilling
Copper-Vapour Laser Drilling

Wavelength: 511 & 578 nm
Power: up to 75 W
Rep. Rate: 5-30 kHz
Pulse Length: 25 ns
Focusability: $M^2 = 1.5$
Price: from $60k+
Excimer Laser Drilling

Typical Manuf. Applications
- Inkjet printer nozzles
- Biomedical sensors
- Environmental sensors
- Telecom
- Display
Ultrashort-Pulsed Laser Drilling

Picosecond or Femtosecond Lasers

Ti:Sapphire, mode locked Vanadate
Wavelength: 780 or 1064 nm and harmonics
Power range: up to 10W, up to 500kHz
Pulse Length: 10ps – 30fs

Advantages
• Material independent
• Min HAZ
• No post-processing necessary

Disadvantages
• High Cost ($150k+)
• Complex
• Frequent Maintenance
• Not mature yet
Dual-Laser Beam Drilling

- **UV laser "trepnanning"**
 - Start at center
 - Concentric circles
 - Increasing diameter

- **CO2 drilling**
 - Beam with fixed diameter 150 µm
 - Copper acts as a mask

Benefits
- Smaller via sizes possible
- Bias more accurate

Laser trepanning
- Path of laser beam
- Final diameter of the laser drilled hole

CO2 beam (IR)
- Copper layer cut by UV at 355 nm from YAG laser.
 - The beam diameter is 20 µm and is moved in a circular path to cut the hole.

Dielectric (FR4, RCC etc) removed by IR at 9.6 µm from CO2 laser.
- The beam is about 150 µm diameter to remove the dielectric material using the hole cut in the copper as a mask.

© M. Kauf, Excellon Corp
Q: “Which laser to use?”

Answer:

Every application is different and should be judged on its merits.
1. Market Overview
2. Which Lasers to use?
3. Physical Mechanisms
4. Laser Drilling Techniques
5. Case Study: Fuel-Injectors
6. Future Trends
Basic Laser-Hole Drilling Setup

- Laser
- Waveplate
- Beam Shaping Optics
- Turning mirror
- Objective Lens
- Optics Adjust Stage
- Gas-Assist Nozzle
- Target
- X-Y Table
Laser-Hole Drilling: Basic Definitions

Laser Intensity
\[I(x) = \frac{2P}{\pi w_0^2} \exp(-2r^2/w_0^2) \]

Laser Spot Size
\[2w_0 = \frac{4f \lambda f M^2}{\pi D} \]

Hole Taper Angle
\[\alpha = \tan^{-1}\left(\frac{d_1-d_2}{2t}\right) \]
Laser-Drilling: Important Parameters

! IMPORTANT NOTE:
Most parameters are interrelated and vary with temperature, pressure, time, etc.
Example: Importance of Pulse Length

- **Pulse Length (FWHM)**

- **Laser Ablation by Melt Expulsion**
- **Laser Ablation by Evaporation**

Resolution (µm)
- **Low Resolution, >100 µm**
- **High Resolution, <10 µm**

- **Peak Power (kW)**

© Lambda-Physik
1. Market Overview
2. Which Lasers to use?
3. Physical Mechanisms
4. Laser Drilling Techniques
5. Case Study: Fuel-Injectors
6. Future Trends
Laser Drilling Techniques

Percussion Drilling = Static Drilling

Direct Focussing
- Coherent Sources ⇒ tight focussing
- Focussed Spot Size ⇒ hole size
- High Fluence ⇒ high drilling speed
- Low Pulse-to-Pulse Stability

Projection Imaging
- Incoherent Sources
- Mask Projection ⇒ shape flexibility
- Low Fluence ⇒ slow drilling
Laser Drilling Techniques

Trepanning Drilling

For Fast Drilling
⇒ Sample or Beam Motion Necessary
⇒ Need High Fluence = Small Spot Size
⇒ Crater < Hole Dimensions
⇒ Helical motion for High Aspect Ratio Features

(Technique offers Good Repeatability, Versatility)
1. Market Overview
2. Which Lasers to use?
3. Physical Mechanisms
4. Laser Drilling Techniques
5. Case Study: Fuel-Injectors
6. Future Trends
Main Technology Drivers

- Emissions Legislation
- Lower manufacturing cost
- Consumer demand for higher performance

Current Manuf. Technology:
- wire EDM \((\text{min hole } \varnothing: 130\mu m)\)
- punching
- mechanical drilling

Future Technology:
Laser Drilling
Global Emissions Legislation

“…vehicle emissions are set to reduce in all regions but with different criteria…”

Courtesy: Ricardo Automotive consultancy
Diesel-Injection Nozzle Drilling

EU & US Emissions Standards Regulations (2007) increasingly require:
⇒ improved fuel combustion
⇒ decreased hydrocarbon & particle emission

Automotive Industry needs:
⇒ small spray droplets in piston chamber
⇒ smaller diameter fuel-injector holes needed
⇒ new drilling technology required

Micro hole Laser drilling

Injector Hole Specification

• High Resolution
• High Aspect Ratio
• Best Accuracy
• Best Quality
• Backwall Protection
• Design Flexibility
• Production Cost
• Reliability
• Repeatability
• New Materials to drill
Diesel-Injection Nozzle Drilling

Different Nozzles Geometries

High Speed Imaging

Nozzle Internal View

No back wall Damage from Laser
Diesel Fuel Filter Drilling

- Fuel filters are used to block fuel impurities before they reach the injectors

Laser Drilling Speed: 100-500 holes / sec
Hole Diameters: 0.05 – 0.3 mm
Material Thickness: <1mm

Courtesy: Lasag Industrial Lasers
Diesel-Injectors: Trepanning Drilling

Steel
1mm thick
Gasoline-Injection Nozzle Drilling

Different Gasoline Injector Configurations
Gasoline-Injection Nozzle Drilling

- Four-hole nozzle
- 250 µm diameter holes
- 250 µm thick steel
- 70 Degree angle
- 5 seconds per hole
Gasoline-Injection Nozzle Drilling

- Eighteen-hole nozzle
- 500 µm diameter holes
- 500 µm thick steel
- 60 degree angle
- 45 seconds per hole
Laser Hole Drilling: Future Trends

- **Better Resolution**

 shorter wavelength, 4th, 5th harm DPSS

- **Higher Processing Speed**

 higher rep.rate, higher average power

- **Better Quality**

 shorter pulsewidth, higher motion control speed

- **New Complex Materials**

 alloys, composites, multi-wavelength systems

- **Industrial Robustness**

 compact, fully diode-pumped laser systems